Quantum supremacy using a programmable superconducting processor

Frank Arute1 , Kunal Arya1 , Ryan Babbush1 , Dave Bacon1 , Joseph C. Bardin1,2, Rami Barends1 , Rupak Biswas3 , Sergio Boixo1 , Fernando G. S. L. Brandao1,4, David A. Buell1 , Brian Burkett1 , Yu Chen1 , Zijun Chen1 , Ben Chiaro5 , Roberto Collins1 , William Courtney1 , Andrew Dunsworth1 , Edward Farhi1 , Brooks Foxen1,5, Austin Fowler1 , Craig Gidney1 , Marissa Giustina1 , Rob Graff1 , Keith Guerin1 , Steve Habegger1 , Matthew P. Harrigan1 , Michael J. Hartmann1,6, Alan Ho1 , Markus Hoffmann1 , Trent Huang1 , Travis S. Humble7 , Sergei V. Isakov1 , Evan Jeffrey1 , Zhang Jiang1 , Dvir Kafri1 , Kostyantyn Kechedzhi1 , Julian Kelly1 , Paul V. Klimov1 , Sergey Knysh1 , Alexander Korotkov1,8, Fedor Kostritsa1 , David Landhuis1 , Mike Lindmark1 , Erik Lucero1 , Dmitry Lyakh9 , Salvatore Mandrà3,10, Jarrod R. McClean1 , Matthew McEwen5 , Anthony Megrant1 , Xiao Mi1 , Kristel Michielsen11,12, Masoud Mohseni1 , Josh Mutus1 , Ofer Naaman1 , Matthew Neeley1 , Charles Neill1 , Murphy Yuezhen Niu1 , Eric Ostby1 , Andre Petukhov1 , John C. Platt1 , Chris Quintana1 , Eleanor G. Rieffel3 , Pedram Roushan1 , Nicholas C. Rubin1 , Daniel Sank1 , Kevin J. Satzinger1 , Vadim Smelyanskiy1 , Kevin J. Sung1,13, Matthew D. Trevithick1 , Amit Vainsencher1 , Benjamin Villalonga1,14, Theodore White1 , Z. Jamie Yao1 , Ping Yeh1 , Adam Zalcman1 , Hartmut Neven1 & John M. Martinis

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1 . A fundamental challenge is to build a high-fdelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2–7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8–14 for this specifc computational task, heralding a muchanticipated computing paradigm.

Scroll to Top